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Instability of a high-speed submerged elastic jet 
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The linearized inertial instability of the parallel shear flow of a viscoelastic liquid 
is considered. An elastic Rayleigh equation is derived, for high Reynolds numbers 
and high Weissenberg numbers, and for a viscoelastic liquid whose first normal 
stress dominates other stresses. The equation is used to investigate the stability of 
a submerged jet, that may be planar or axisymmetric, having a parabolic velocity 
profile. The sinuous mode is found to be fully stabilized by sufficiently large elasticity. 
The varicose mode in the planar case is partially stabilized, being unstable only at 
longer wavelengths and with a reduced growth rate. An axisymmetric jet, which is 
stable to varicose perturbations at zero elasticity, is found to be unstable to short- 
wave disturbances for small non-zero elasticity. This novel instability involves elastic 
waves in the shear. It is also present in other modes but does not have the fastest 
growth rate. 

1. Introduction 
In a recent paper Azaiez & Homsy (1994) studied the stabilizing effect of elastic 

normal stresses on the inertial instability of a free shear layer, the Kelvin-Helmholtz 
instability. In order to isolate the inertial instability, they considered high Reynolds 
numbers. They found that there was a significant stabilization only for non-Newtonian 
fluids with large normal stresses, and among these only for the Oldroyd-B fluid at 
high Weissenberg numbers. For the free shear layer, Azaiez & Homsy found the 
growth rate was reduced by the elastic stresses and the unstable wavelengths became 
long. 

In this paper we consider another inertial instability, that of a submerged jet having 
a parabolic velocity profile at high Reynolds number. We selected this geometry 
because there are some problems in establishing consistently the undisturbed free 
shear flow, whereas our parabolic profile could be established in a pipe feeding the 
jet. Following Azaiez & Homsy we consider an Oldroyd-B fluid at high Weissenberg 
number. Additionally we will consider only the temporal instability of a spatially 
infinite unidirectional base flow. Our geometry is either planar or axisymmetric. 

There are some practical problems in applying our analysis to a real jet. A real jet 
evolves slowly downstream, and for such a jet an analysis of the spatial instability 
may be more appropriate. Also there may be a die-swell, particularly at low speeds, 
which changes significantly the parabolic velocity profile in a the nozzle. We ignore 
these practical problems in this paper. 

The inertial instability of a submerged jet in a Newtonian fluid has been considered 
by many, motivated in particular by the noise generated by aircraft engines. Various 
velocity profiles have been studied in two dimensions and in axisymmetric flows. 



312 J .  M.  Rallison and E. J.  Hinch 

For example Bickley (1937) and Drazin & Howard (1966) considered the inviscid 
two-dimensional flow with a sech2y profile, and Batchelor & Gill (1962) considered 
inviscid axisymmetric jets with top-hat and parabolic velocity profiles. In general a 
sinuous mode is found to be more unstable than a varicose mode. In fact Batchelor 
& Gill found no unstable varicose mode for an axisymmetric submerged jet with a 
parabolic profile. 

2. An elastic Rayleigh equation 
Consider the flow of an Oldroyd-B fluid governed by 

v.u = 0 ,  
Du 
Dt 

p -  = -Vp + pV2u + GV.A + f , 
1 

~ = A.VU+VU~.A - - ( A - Z ) ,  
DA 
Dt T 

where G is the elasticity modulus and r the relaxation rate associated with the polymer 
stretch A. 

We take as the unperturbed base state a general unidirectional flow 

u = ( U ( Y , Z ) , O , O )  3 

with a cross-sectional length scale b. The associated polymer stretch in the base state 
is 

1 + 222 (au/ay)2 + 222 (au/aZl2 Taulay m / a Z  

m / a z  0 O 1 1 .  A =  ( ra u p y  1 

A body force f is needed to maintain this base state. 
We make two approximations. First that the Reynolds number p U b / ( p  + Gr) is 

large. This enables us to concentrate on the inertial instability, and to ignore the 
diffusion of momentum. Second that the Weissenberg number U r / b  is large. This 
provides the large normal stresses and allows us to ignore stress relaxation during the 
instability. The elastic stress in the basic state is then the normal stress GA11. Using 
lower case letters to denote perturbed quantities, the equations governing the linear 
instability then become 

au  a v  a w  
ax ay a Z  
-+ -+-  

P [(; + u&) u + v a y  + W a z  au 

P (; + u&) v 

P (; + U L )  w 

a~~~ aAll 
(&+U&)a11+udy az + W -  

(; + U L )  a12 
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- + U-  a13 = All- .  

It should be noted that the high-Reynolds-number approximation of ignoring the 
small tangential viscous stresses has the effect of suppressing some modes of instability 
such as the co-extrusion instability discussed by Hinch, Harris & Rallison (1992). 
Furthermore, although the elastic tangential stresses in the base state A12, A13 are 
smaller than the basic normal stress A11 by a factor b / U z  and so are negligible, the 
perturbation tangential stresses a12, a13 are forced by A11 and so must be retained. 

We consider a temporal instability where all perturbation quantities are functions 
of y and z and are proportional to ee with t9 = ia(x - ct). The growth rate is thus 
0 = aci. 

Solving for the stress perturbations we find 

a12 = Allu/(U - c )  9 a13 = Allw/(U - c )  , 
2~~~ au a A l l )  + ( 2~~~ aal1) 2Alliau + -- - - 

all = ia( U l [  - c )  ( u - ~  ay  ay u - c  a Z  az 
Substituting these into the momentum equation, we obtain 

GA1l ) (ia(u - c)u + u- + w- = - i q ,  
( p  - (U  - c)2 au  a y  au>  aZ 

A physically more revealing form of these expressions may be obtained by making 
use of the streamline displacements in the cross-section. (For a planar flow these 
displacements are closely related to the streamfunction.) With small streamline 
displacements (q ,c )  of the basic flow, the perturbation flow in the cross-section is 
given by 

u = ia( U - c)q and w = ia( U - c)c . 
Mass conservation then gives the perturbation flow in the x-direction 

(:; ;:) au au 
ay a Z  

u = - q - - - - - - ( U - c )  -+ -  . 

The first two terms represent the velocity maintaining its initial value as the streamlines 
are displaced, while the last terms represent the acceleration of the flow necessary as 
the streamlines crowd together, aq/ay + a(/& < 0. 

With this transformation, the perturbation stresses simplify to 

a12 = iaqA11 and a13 = ia<All , 

corresponding to a tilting of the streamlines that carry the basic stress, and 

In the last expression, the final pair of terms represents the initial basic stress being 
maintained on the displaced streamlines, while the first pair represents an enhancement 
of the stress generated by compressing the streamlines. 
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The momentum equations now become 

[P(U - Cl2  - 

The first equation expresses the balance between three effects: an acceleration in 
the x-direction when the streamlines crowd together, the extra elastic stress in the 
x-direction also caused by the streamlines crowding, and the pressure gradient in 
the x-direction. The equations in the yz-cross-section express a balance between a 
centrifugal acceleration around the curved streamlines, an elastic hoop stress around 
the curved streamlines, and the pressure gradient in the cross-section. 

The streamline displacements ( q , [ )  and the pressure p must be continuous every- 
where (e.g. at the edge of the jet). These requirements provide appropriate boundary 
conditions for the momentum equation. 

It should be noted that, although our derivation above is for an Oldroyd-B fluid, 
these equations apply to a wider class of elastic liquids. We have assumed only that the 
normal stress All  dominates the base state, and that the perturbation stresses are the 
base state stresses co-deformed by the perturbation flow and with no stress relaxation 
on the time scale of the instability. Thus any constitutive equation involving an affine 
time derivative will give the same result at high Weissenberg numbers. 

For a planar flow with streamfunction y(x, y) = ee$(y) the streamline displacements 
are 

[ = O  and q=-$ / (U-c )  

giving the elastic Rayleigh equation derived by Azaiez & Homsy: 

More generally we may eliminate q and [ to form a single scalar equation for the 
pressure p(y, z) 

where VL operates in the yz-cross-section. This self-adjoint form yields a standard semi 
circle theorem (Howard 1961) which says that the complex wave speed c must lie 
within a circle centred on i(Umax + Urnin) having radius ;(Urnax - Urnin). The effect 
of the elasticity GAll term is to reduce the radius of the circle slightly below this 
estimate. In practice in preference to this single equation for p we prefer to use the 
separate equations above for q,  [, and p since they make the associated boundary 
conditions more natural. 

The presence of elasticity in the flow introduces the possibility of propagation 
of small-scale disturbances as elastic waves on the tensioned streamlines at a speed 
c, = (GAl1/p)'/* relative to the flow. This speed of course exceeds the shear wave 
propagation speed ( G/P)'/~ appropriate for the unstressed state and for propagation 
of disturbances perpendicular to the streamlines. 

The elastic form of the Rayleigh equation contains a new dimensionless group E 
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giving the ratio of elastic and inertial terms as 

GAll - Gz2 

P u2 Pb2 
E = -  - 

since A11 = U2z2/b2, where b is the length scale of the variations of U(y,z ) .  This 
elasticity number may alternatively be viewed as the square of an elastic Mach 
number U/c ,  appropriate for the stressed basic state. The remarkable independence 
of this number from the magnitude of the velocity arises because both the Reynolds 
and elastic stresses increase quadratically with the velocity. 

It is important for the self-consistency of our analysis that the basic flow should 
not be modified by viscosity or elasticity on the time scale of the instability which is 
being studied, i.e. on the time scale b /U.  Later numerical computations show that 
this estimate is correct for the fastest growing mode within a factor of order unity. 
Vorticity diffuses on the time scale pb2/p  which is long compared with b /U provided 
that the Reynolds number pUb/p  is large, as assumed. The elastic stress relaxes on 
the time scale z; again long if the Weissenberg number U z / b  is large. Finally the time 
for shear waves to propagate across the jet at the speed (G/p)'12 may be written as 
(Uz/b)'12 x (pUb/,u)'/2 x (p/Gz)'12 x b / U ,  which is also long if the Weissenberg and 
Reynolds numbers are large and p / G z  is not small. 

3. Two-dimensional jets 

and with a parabolic profile 
We consider a base flow of a submerged jet of width b and maximum velocity UO 

Uo(1- y2/b2)  in -b < y < b 
= ( 0  otherwise 

While it is simplest to imagine that the fluids inside and outside the jet are identical, 
within the approximation of high Reynolds and Weissenberg numbers any miscible 
pair of fluids having the same density could be involved. The linear stability theory 
does not 'see' the rheology of the fluid outside the jet. The associated base stress for 
the Oldroyd-B fluid is 

8Gz2Uiy2/b4 in -b < y < b 
otherwise GAll = (0 

We non-dimensionalize the problem using the velocity UO and the length b. This results 
in one non-dimensional group measuring the strength of the elasticity E = Gz2/pb2. 
The elastic Rayleigh equation then becomes 

[(I - y2  - c ) ~  - 8Ey2] a2q = 

within the jet -1 < y < 1, and outside the jet the same equations apply except that 
the square bracket is replaced by c2. The boundary conditions at the edge of the jet 
are that the streamline displacement q and the pressure p are continuous. 

We will examine the stability both of a sinuous mode which has streamline dis- 
placements symmetric about the centreline y = 0 and of a varicose mode which has 
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a 
FIGURE 1. The growth rate 0 = aci as a function of wavenumber a for the sinuous mode of a 
two-dimensional submerged jet with a parabolic velocity profile. The different curves are from the 
top for E = 0, 0.05, 0.1 and 0.15. 

pressure symmetric about the centreline. We thus apply the conditions 

q = 1, 
q = 0, 

p = 0, 
p = 1, 

at y = 0 for the sinuous mode, 
at y = 0 for the varicose mode 

Outside the jet in lyl > 1 the governing equations describe a potential flow 

where K is a constant. This solution requires us to apply a boundary condition at 
the edge of the jet 

p = -ac2q at y = I .  
The problem has therefore been reduced to integrating the elastic Rayleigh equation 

starting from the sinuous/varicose centreline conditions at y = 0 and integrating to 
the potential flow matching condition at the edge of the jet at y = 1. A solution 
will only be possible if the complex wave speed c = c, + ici is an eigenvalue for the 
particular real wavenumber a. We are interested in the growth rate = aci as a 
function of the wavenumber a and elasticity E .  

This problem has been tackled numerically, using a fourth-order Runge-Kutta 
scheme to integrate the differential equation and a Newton-Raphson method to find 
the eigenvalue. The step-size for the integration was automatically reduced where 
the coefficients in the equation became large. Sometimes it was possible to avoid 
large coefficients by integrating the differential equation along a path in the complex 
y -plane. 

Results for the growth rate as a function of wavenumber are shown for various 
values of the elasticity number E in figure 1 for the sinuous mode and in figure 2 for 
the varicose mode. We found only one unstable eigensolution for a given wavenumber. 
The growth rate starts from zero for long waves as a + 0, increases to a maximum 
and then decreases to zero again as a + co. We found no finite wavenumber cut off 
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FIGURE 2. The growth rate 0 = aci as a function of wavenumber CI for the varicose mode of a 
two-dimensional submerged jet with a parabolic velocity profile. The different curves are from the 
top for E = 0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0. Further curves for 0 < E < 0.05 are shown in 
figure 9. 

FIGURE 3. The maximum growth rate of the two-dimensional jet as a function of the elasticity for 
the sinuous mode (continuous curve) and the varicose mode (dashed curve). The dotted curves are 
the asymptotic results for long waves. 

corresponding to a neutrally stable mode. The effect of the elasticity is to reduce the 
growth rate and to push the maximum growth rate to longer wavelengths. 

Figure 3 gives the maximum growth rate as a function of the elasticity. For 
the inelastic jet, the sinuous mode is more unstable than the varicose mode. As 
the elasticity is increased the sinuous mode becomes stabilized for disturbances 
of all wavelengths at E = 0.2, but the varicose mode is always unstable albeit 
with a reducing growth rate. The varicose mode becomes the more unstable at 
about E = 0.08. 
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For long wavelengths a + 0, it is possible to make some analytic progress. At 
long wavelengths, the sinuous mode has constant streamline displacements at leading 
order and a small variation of pressure 

q - 1 ,  

p - a2 lY[(l - y 2  - c ) ~  - 8Ey2] dy . 

Substituting this into the boundary condition at y = 1 yields the dispersion relation 

2 8 1  4 a [ ? ( ~ - E ) - ~ C + C ~ ]  = -ac2. 

Thus as a + 0 

c - +a & i5a'/2[6(f - E )  - . 
This predicts a stabilization of the sinuous mode at E = 0.2, as seen in the numerical 
results. It also predicts as E + 0.2 a maximum growth rate at a,, - ;(: - E )  of 

which is plotted as a dotted line in figure 3. This analysis shows that the driving 
force of the instability is the centrifugal force of the fluid moving around the curved 
streamlines, and that this is partially or fully stabilized by the hoop stress of the 
curved tensioned streamlines. As CI + 0, the wave speed c + 0 so that to leading 
order the centrifugal force in the above expression for the pressure is pU2.  The 
first correction comes from the reduction of the velocity relative to the small wave 
speed in p ( U  - c ) ~ .  More general velocity profiles U ( y )  are similarly stabilized to 
long-wavelength sinuous disturbances if 

The varicose mode is not fully stabilized by the elasticity. Instead the growth 
rate decreases and the most unstable wavelength becomes long as E --f 00. At long 
wavelengths a + 0, the leading approximation to the varicose mode is a pressure 
constant across the jet and streamline displacements such that the acceleration along 
the jet balances this streamwise pressure gradient, i.e. 

P - 1 ,  
dY 1' (1 - y 2  - c ) ~  - 8Ey2 . 

Our computations show that as a + 0 the wave speed tends to the centreline velocity 
of unity with a small imaginary correction. We therefore set c = l+i6 and approximate 
the above integrand by l/(-S2 - 8Ey2)  for E >> 1. Thus the major contribution to 
the integral comes from a thin region of thickness C ~ / ( S E ) ' / ~ ,  and outside this region 

7c 

2 ~ 5 ( 8 E ) l / ~  * 
q = q 1 - -  

Substituting this estimate into the boundary condition on the edge of the jet y = 1 
gives a leading-order approximation to the dispersion relation. The first correction 
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comes for a small correction to the pressure 

for E >> 1. With this correction term the dispersion relation is 

(1 - ! E N )  . 
4( 2E)lI2 

6 =  

The maximum growth rate thus occurs at uMx = 0.25/E and is 

which is plotted in figure 3. The above analysis shows that the varicose mode is not 
fully stabilized by elasticity because the associated eigenfunction is peaked near the 
axis of the jet where the normal stresses vanish. 

The mechanism of the varicose instability is different from that of the sinuous mode. 
At long wavelengths the varicose mode propagates with the centreline velocity and 
grows slowly. We consider this instability in the frame that moves with the centreline 
velocity. The fluid outside the jet is then moving backwards past a slowly growing, 
but stationary disturbance of the jet. Where the jet is thicker, the streamlines outside 
crowd together and hence the pressure drops by Bernoulli (the reduced pressure 
accelerating approaching fluid and retarding receding fluid). For long waves, there 
is little variation of the pressure across the jet and hence the pressure inside the jet 
is also reduced where the jet is thicker. Bernoulli then implies that the streamlines 
must also be crowded like those outside the jet, so long as there is flow along the 
streamlines, i.e. everywhere except near the centre of the jet. A consequence of this 
crowding of the streamlines where the jet is thicker is that the streamlines must dilate 
near the centre of the jet. But near the centre of the jet, which is a sort of critical 
layer, the flow would be stagnant if there was no growth. The low-pressure region 
however 'attracts' fluid (i.e. accelerates fluid towards it), which further dilates the 
streamlines locally and therefore makes the disturbance grow. Elasticity reduces this 
growth by reducing the thickness of the region where the low-pressure attracts fluid: 
just off the centreline, the normal stresses are non-zero and their perturbations can 
instead balance the low pressure by dilating the streamlines. 

4. Axisymmetric jets 

and with a parabolic profile 
We consider a base flow of a submerged jet of width b and maximum velocity Uo 

= ( 0  otherwise * 

Uo(1 - r2/b2)  in r < b 

The associated base stress for the Oldroyd-B fluid is 

8Gz2Uir2/b4 in r < b 
otherwise ' 

GAll = { o  
We again non-dimensionalize the problem using the velocity UO and the length b, with 
the one non-dimensional group measuring the strength of the elasticity E = Gz2/pb2. 
We look for a possibly non-axisymmetric perturbation with pressure p and radial 
displacement proportional to cos no, and circumferential displacements proportional 
to sinno. The elastic Rayleigh equation then reduces to 
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FIGURE 4. The growth rate a = tlci as a function of wavenumber a for the n = 1 sinuous mode for 
an axisymmetric submerged jet with a parabolic velocity profile. The different curves are from the 
top for E = 0, 0.05, 0.1 and 0.15 

r 

(1 - r2 - c)’ - 8Er2 
P ,  dr 

2 

dp - (1 - r 2 - c )  -8Er2  

dr r 4 .  - _  

Here q/ct2r is the radial displacement of the streamlines. Regularity as r -+ 0 requires 

p - rn and q - nr”/( 1 - c ) ~  . 

The potential flow outside the jet sets a boundary condition at r = 1: 

- p -  - c2Kn(a) 
4 “KAW 

with modified Bessel function K,. The same numerical technique as for the planar 
case was employed to find the growth rate o = clci as a function of the wavenumber 
a and elasticity E .  

Figure 4 gives the growth rate for the n = 1 sinuous mode as a function of the 
wavenumber. As in the two-dimensional jet, the growth rate tends to zero at long and 
short wavelengths, and has a maximum at an intermediate wavenumber. Increasing 
the elasticity decreases the maximum growth rate, and again the most unstable 
wavelength becomes long. At a critical value of the elasticity E = E ,  = 0.3756 the 
n = 1 sinuous mode is fully stabilized (and at 0.2254 for n = 2, 0.1759 for n = 3 
and 0.1518 for n = 4). An examination of the numerical results for the growth rate 
suggests that as E ---f E. 

5(E. - E )  
o = a(E,  - E)3.2 

We have no detailed analysis for this last result, but anticipate that the centrifugal 
mechanism is similar to that for the sinuous mode of the two-dimensional jet. The 
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FIGURE 5. The growth rate CT = aci as a function of wavenumber a for the varicose mode of an 
axisymmetric jet. The different curves are from the right for E = 0.0025, 0.005, 0.01, 0.025,0.05, 0.1, 
0.15 and 0.2. 

scalings are not identical because in three dimensions the fluid can move around the 
cross-section instead of moving the long distance of a wavelength. 

With zero elasticity, the axisymmetric jet with a parabolic velocity profile was found 
by Batchelor & Gill (1962) to be stable to varicose ( n  = 0) perturbations. It seems 
that in the radial geometry the crowding of the streamlines in the outer part of the 
jet cannot be matched by sufficient dilatancy of the streamlines in the critical layer 
on the centreline. With small elasticity, however, we find that the jet is unstable. 
Figure 5 gives the growth rate as a function of wavenumber at various small values 
of the elasticity. The varicose instability exists only for small non-zero elasticity, 
0 < E < 0.228. As the elasticity tends to zero, the maximum growth rate tends to 
a constant while the unstable wavenumbers tend to infinity. Hence the limit of zero 
elasticity is singular. Figure 6 gives the maximum growth rate as a function of the 
elasticity for both the varicose and n = 1 sinuous mode. The sinuous mode is more 
unstable at small elasticity 0 < E < 0.07 and larger elasticity 0.228 < E < 0.376. 

The mechanism of the varicose instability of the axisymmetric jet is quite different 
from that of the previous modes, as the wavenumber dependence shown in figure 
5 hints. It involves the interaction of two elastic waves. As the elasticity tends 
to zero, the real part of the velocity c, tends to zero and not to unity as in the 
case of the two-dimensional jet. Thus the critical layer is near the outer edge of 
the jet rather than on the centreline. Near the outer edge the elastic stress GAll is 
approximately constant at a dimensionless value of 8E. Corresponding to this base 
stress in the streamlines, elastic waves propagate at a velocity *(8E)'l2 relative to the 
flow. Approximating the flow by the constant shear 2( 1 - r )  near the edge of the jet, 
we see that a forwards travelling elastic wave on the edge of the jet r = 1 has the same 
velocity as a backwards travelling elastic wave at r = 1 - (8E)'/2 just inside the jet if 
the elasticity is small E << 1. This is the real part of the velocity of the instability. The 
imaginary part is found to be approximately one tenth the size of the real part, and 
so the instability grows slowly as it propagates. The numerical results also show that 
the wavelength of the fastest growing wave is approximately ten times the thickness 
of the critical region between r = 1 and r = 1 - (8E)'/2. With amax cc 1/(8E)'12 and 
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E 
FIGURE 6. The maximum growth rate as a function of the elasticity for the sinuous mode 

(continuous curve) and the varicose mode (dashed curve) of the axisymmetric jet. 

- 

0.10 - 

0.08 - 

(T 0.06 - 

0.04 - 

0.02 - 

0 1 2 3 4 5 6 
a(8E)l" 

FIGURE 7. The growth rate CT = aci as a function of the rescaled wavenumber a(8E)''' for the 
varicose mode of an axisymmetric jet. The different curves are from the top for E = 0.0025, 0.005, 
0.01, 0.025, 0.05, 0.1, 0.15 and 0.2. 

ci K (8E) ' /2 ,  it follows that the maximum growth rate should be independent of the 
elasticity E as it tends to zero. This is demonstrated by figure 7, where we have plotted 
the growth rate as a function of a rescaled wavenumber a x (8E)'12. One consequence 
of this observation is that this instability mode is universal for all jet profiles having 
a discontinuity in the shear rate. One can easily write down the rescaled equations 
for the asymptotic form of the instability as E + 0, but we have not solved these 
equations because no further simplification (such as the rescaled wavelength of the 
fastest growing wave being either small or large) is available. 

In the critical region 1 - (8E)'12 < r < 1, the elasticity dominates inertia in the 
factor (p(  U - c ) ~  - G A I I )  which occurs in the governing equation. (Ignoring the 
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FIGURE 8. The continuous lines are the streamlines of the varicose instability for E = 0.01 at a = 3. 
The boundary of the jet is indicated by the heavy line. The dashed curves are contours of pressure. 
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FIGURE 9. The growth rate G = aci as a function of wavenumber a for the varicose mode of a 
two-dimensional submerged jet with a parabolic velocity profile. The different curves are labelled 
by the value of the elasticity E .  

imaginary part of the wave speed, this factor vanishes at r = 1 and 1 - (8E)'/*.) Just 
outside the jet, where there is no elasticity, inertia dominates. Hence the factor takes 
opposite signs on either side of the edge of the jet. The axial momemtum equation 
thus predicts that a low-pressure region will cause the streamlines to crowd outside 
the jet and to dilate just inside the jet, as shown in figure 8. Note the streamlines 
are hardly deflected in the interior of the jet where the velocity and hence the inertial 
terms are very much larger than at the edge. 

Because this E + 0 instability lives near the edge of the jet, it does not know 
whether the jet is axisymmetric or planar nor whether the disturbance is varicose or 
sinuous. Thus one might have expected to see the mode in the earlier results for the 



324 J.  M .  Rallison and E .  J .  Hinch 

two-dimensional jet and for the sinuous mode of the axisymmetric jet. The earlier 
results had, however, too large a value of the elasticity. Figure 9 gives further results 
for the varicose mode of the two-dimensional jet, for lower values of the elasticity. 
For E < 0.01, one can see that two modes are present, one with fastest growth around 
a = 2 and one around a = l/(8E)1/2. The new edge mode always grows more slowly 
for a planar jet than the central mode. For E > 0.025 the two modes merge. 

5. Conclusions 
Viscoelastic liquid jets in air are known to be stabilized against capillary Rayleigh- 

Taylor instabilities by the presence of elastic stresses (see Goldin et al. 1969, quoted 
recently by Boger & Walters 1993). We are unaware of comparable experiments with 
submerged jets of miscible fluids, but our calculation suggests that inertial instabilities 
will again be reduced by the presence of streamline tension and that the most 
dangerous linear sinuous mode for Newtonian fluids can be suppressed altogether by 
a sufficient degree of elasticity. The varicose mode of the two-dimensional parabolic 
jet on the other hand cannot be fully suppressed. Our results for the varicose mode 
of the axisymmetric jet show that elasticity may even destabilize the flow. 

The computations were supported in part by the SERC CSI grant GR/H57585 
and in part by the DTI LINK programme on colloids. 
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